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Radiatively corrected semileptonic spectra in B meson decays
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Abstract. We show how radiative QCD corrections calculated in terms of quarks can be incorporated at
the hadron level in inclusive semileptonic B-meson decays. The bound state effects are described by a
momentum distribution function of the b quark. The summation over the final states and the averaging
over the momentum distribution of the decaying quark render the radiative corrections finite. With this
coherent formalism we investigate the shape of the electron spectra for b → u and b → c decays as a
function of the parameters of the theory. The resultant b → c electron energy spectrum is in agreement
with the experimental data.

1 Introduction

Semileptonic B-meson decays have been studied for some
time now. The inclusive decays

B̄ → Xq + e+ ν̄e , (1)

with B̄ representing B− or B̄0 and Xq any possible hadro-
nic final state containing a charm quark (q = c) or an up
quark (q = u), provide information on both couplings Vcb

and Vub, as well as new information on the internal struc-
ture of the B-meson. In this paper we study the electron
energy spectra. For the theoretical description of the elec-
tron spectra in (1), strong interactions in the underlying
weak decays must be incorporated, since they are responsi-
ble for the confinement of quarks and gluons into hadrons.
They will be included in two steps: as bound state effects
and also in the form of gluons radiated during the decay.

For inclusive B-meson decays, it was recognized that
extended regions of phase space involve large values of
q2, the momentum transfer squared, originating from the
large mass of the B meson. Consequently the commutator
of the two currents describing the decay is dominated by
distances close to the light-cone. In this case it is justi-
fied to replace the commutator of the weak currents by
their light-cone singularity times a bilocal operator in b-
quark fields [1–3]. This replacement together with stan-
dard mathematical methods leads to general expressions
of the decay spectra which involve a b-quark distribu-
tion function, whose origin is non-perturbative. Thus the
semileptonic decays in (1) can be described, in direct anal-
ogy to deep inelastic scattering, in terms of a quark distri-
bution function, which depends on a new scaling variable
ξ+.

It has also been recognized that the heavy quark field
can be studied in an effective field theory derived from

the QCD Lagrangian. The heavy quark effective theory
(HQET) sets a framework for keeping track of the heavy
quark mass dependence and for parametrizing nonper-
turbative phenomena. The effective theory has been suc-
cessfully applied to inclusive B decays [4–12]. Using the
operator product expansion and the method [5–7] of the
HQET, it was possible to derive sum rules for the distribu-
tion function, which depend on the kinetic energy and the
chromomagnetic energy of the b-quark in the B-meson.
The numerical values for the sum rules are determined by
static properties of B mesons and QCD sum rules [13].
The sum rules specify the mean value and the variance of
the distribution function. They imply that the distribu-
tion function f(ξ) peaks at large values of ξ ≈ 0.93 and is
very narrow.

In addition radiative QCD corrections must be includ-
ed. The QCD radiative corrections to the electron energy
spectra were computed [14–19] at the quark level. In the
quark decay the phase space ends at the electron energy

Ee = mb

2

(
1 − m2

q

m2
b

)
, with mb and mq the masses of the

b-quark and the final quark, respectively. The quark de-
cay rates as well as the radiative corrections vanish for

Ee >
mb

2 (1− m2
q

m2
b

), whereas in reality the physical endpoint

is Ee = M
2 (1 − M2

Xmin

M2 ) with M the mass of the B-meson
and MXmin the minimum value of the invariant mass of
the hadronic final state. In addition, the O(αs) radiative
corrections at the quark level have logarithmic singular-
ities at the endpoints. For inclusive decays, however, we
integrate over the phase space of the final quark and av-
erage over the momentum distribution of the initial quark
in order to incorporate the bound state effect. These steps
sum over ensembles of states, render the radiative correc-
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tions finite [20,21] and extend the phase space from the
quark level to the hadron level.

In this way we have at our disposal a coherent treat-
ment of perturbative and nonperturbative QCD effects.
This treatment has the advantage of accounting correctly
for the phase-space effects and producing the electron en-
ergy spectra which are smooth everywhere up to the phys-
ical endpoints. For instance, the spectrum is a smooth
function of the electron energy Ee in the endpoint region
between the b → c endpoint Ee = M

2 (1− M2
D

M2 ) = 2.31 GeV

and the b → u endpoint Ee = M
2 (1 − M2

π

M2 ) = 2.64 GeV,
which is useful for extracting |Vub| since only the b → u
transition is allowed in this region.

This paper contains a brief, but complete presenta-
tion of the various improvements of the parton model [1,
2] involved in the calculation of the semileptonic spec-
trum. For the sake of completeness we present in Sect.
2 the general formalism for inclusive semileptonic B me-
son decays. Then we show in Sect. 3 that the light-cone
dominance provides a foundation for the parton model
and a systematic framework for improving it by includ-
ing QCD corrections. In these two sections, we point out
how the general formula in (7) reduces to an expression
for the decay rate in (24) in terms of a distribution func-
tion. The distribution function is constrained by three sum
rules which are discussed in Sect. 4. Two of the sum rules
were derived in the heavy quark effective theory and are
now incorporated in the approach. One of our purposes is
to calculate the electron energy spectra. For a meaningful
calculation we must include QCD radiative corrections.
In Sect. 5 we propose a method for including the QCD
radiative corrections to bound states. The method is an
improvement over the quark level results. It establishes
that radiative corrections are finite and calculable (Fig.
1). All these improvements make possible, in Sect. 6, the
calculations of the semileptonic spectra and the studies of
their sensitivity to the underlying parameters. We find a
satisfactory fit of the b → c spectrum for values of the
parameters consistent with the sum rules (Fig. 7). The
electron spectrum for b → u decays in the endpoint re-
gion 2.31 GeV≤ Ee ≤ 2.64 GeV is predicted and shown
to be insensitive to two parametrizations of the distribu-
tion function (Fig. 4). This result should be useful for
extracting |Vub|.

2 General formalism

The inclusive semileptonic decays (1), in which the B me-
son of four-momentum P decays into an electron of four-
momentum ke and an antineutrino of four-momentum kν ,
are described by the decay amplitude

M = Vqb
GF√

2
ū(ke)γµ(1 − γ5)v(kν)〈n|jµ(0)|B〉 . (2)

Here Vqb are the elements of the CKM matrix and jµ(x)
is the weak current, which in terms of quark fields is given
by

jµ(x) = q̄(x)γµ(1 − γ5)b(x) (3)

and |B〉 is the B-meson state normalized according to
〈B|B〉 = 2P0(2π)3δ3(0). The basic quantity for the de-
cay is the second rank tensor

Wµν =
∑

n

∫ [ n∏
i=1

d3Pi

(2π)32Ei

]
(2π)3δ4(P − q −

n∑
i=1

Pi)

×〈B|j†
ν(0)|n〉〈n|jµ(0)|B〉 , (4)

where q stands for the four-momentum transferred from
the decaying B meson to the lepton pair, q = ke +kν . It is
useful to express the hadronic tensor in terms of a current
commutator

Wµν = − 1
2π

∫
d4yeiq·y〈B|[jµ(y), j†

ν(0)]|B〉 (5)

because the commutator is more convenient for theoretical
considerations. The hadronic tensor can be decomposed in
terms of scalars Wa(q2, q · P ), a = 1, . . . , 5, as follows:

Wµν = −gµνW1 +
PµPν

M2 W2 − iεµναβ
Pαqβ

M2 W3

+
qµqν
M2 W4 +

Pµqν + qµPν

M2 W5 . (6)

The tensor (Pµqν − qµPν) does not appear because of the
time reversal invariance. We can express the differential
decay rates in terms of the five hadronic structure func-
tions Wa, a = 1, . . . , 5. The decay rate of the process (1)
in the rest frame of the B meson is

d3Γ

dEedq2dq0

=
G2

F |Vqb|2
16π3M

[
W1q

2 +W2(2Eeq0 − 2E2
e − q2

2
)

+W3
q2

M
(q0 − 2Ee)

]
. (7)

The structure functions W4 and W5 do not appear above
because their contribution is proportional to the square of
the electron mass and we ignore the lepton masses. In this
general formalism the unknown hadronic structure resides
in the functions Wa.

3 Light-cone dominance

It is well known that integrals like the one in (5) are dom-
inated by distances where

0 ≤ y2 ≤ 1
q2
. (8)

For inclusive semileptonic B-meson decays (1), q2 is time-
like and varies in the physical range

0 ≤ q2 ≤ (M −MXmin)2 . (9)

For extended regions of phase space the momentum trans-
fer squared satisfies q2 ≥ q2ref with q2ref ' 1 GeV2. In these
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regions we expect the dominant contribution to the inte-
gral in (5) to come from distances of the current commuta-
tor close to the light-cone. The commutator in this region
is in fact singular leading to the dominant contribution

〈B| [jµ(y), j†
ν(0)

] |B〉 = 2(Sµανβ − iεµανβ) [∂α∆q(y)]

×〈B|b̄(0)γβ(1 − γ5)b(y)|B〉 , (10)

where Sµανβ = gµαgνβ + gµβgνα − gµνgαβ and ∆q(y) is
the Pauli-Jordan function for a free q-quark of mass mq.
The factor in the square bracket in (10) with the deriva-
tive of the Pauli-Jordan function has a singularity on the
light-cone. The last factor with the reduced matrix ele-
ment contains the long-distance contribution. The prod-
uct of those two factors is Lorentz covariant and can be
calculated in any Lorentz frame of reference.

The reduced matrix element has a simple Lorentz struc-
ture. It is in general a function of two scalars y2 and y ·P
and can be expanded in powers of y2:

〈B|b̄(0)γβ(1−γ5)b(y)|B〉 = 4πP β
∞∑

n=0

(y2)nFn(y·P ) . (11)

We shall keep the first term of the series because the higher
order terms are suppressed by powers of q−2. This approx-
imation is justified provided the coefficients are not very
large. We can estimate the coefficients in quark models or
the heavy quark effective theory which indicate that they
satisfy

(y2)nFn(y · P ) ≈ e−imbv·y(Λ2
QCD/q

2)n , (12)

where v is the velocity of the initial B meson, defined by
v = P/M . This behavior motivates the truncation of the
series by keeping the first term with n = 0.

The Fourier transform of F0(y · P ) defines the quark
distribution function

f(ξ)=
1

4πM2

∫
d(y · P )eiξy·P

×〈B|b̄(0)P/(1 − γ5)b(y)|B〉|y2=0 . (13)

We can use the inverse Fourier transform

F0(y · P ) =
1
2π

∫
dξe−iξy·P f(ξ) (14)

and substitute F0 in (11), (10) and (5), then carry out the
y-integration in (5) and arrive at

Wµν=4(Sµανβ − iεµανβ)
∫
dξf(ξ)ε(ξP0 − q0)

×δ [(ξP − q)2 −m2
q

]
(ξP − q)αP β . (15)

The components of the tensor Wµν are expressed in terms
of the distribution function. We have shown that the dom-
inance of the light-cone makes possible the expression of
the decay rate in terms of a quark distribution function
defined in (13).

A special consequence of the decay kinematics is the
occurrence of two roots in the argument of the δ-function
in (15), namely

ξ± =
q · P ±

√
(q · P )2 −M2(q2 −m2

q)

M2 . (16)

We shall elaborate on this property below. The light-cone
dominance ascribes the five hadronic structure functions
to a single light-cone distribution function. The explicit
relations are the following

W1=2[f(ξ+) + f(ξ−)] , (17)

W2=
8

ξ+ − ξ−
[ξ+f(ξ+) − ξ−f(ξ−)] , (18)

W3=− 4
ξ+ − ξ−

[f(ξ+) − f(ξ−)] , (19)

W4=0 , (20)
W5=W3 . (21)

The structure functions are evaluated in two variables
ξ±. The second root, ξ−, is a straightforward consequence
of the analysis and corresponds to the creation of quark-
antiquark pairs through the Z-diagram because the energy
of the final quark is negative. The kinematic ranges for ξ±
are

mq

M
≤ξ+ ≤ 1 , (22)

−mq

M
≤ξ− ≤ 1 − 2mq

M
. (23)

In the light-cone and away from the resonance region f(ξ−)
is relatively small. For b → c decays ξ−

<∼ 0.5 where f(ξ−)
is negligibly small. Scaling of the structure functions with
the scaling variable ξ+ holds when f(ξ−) is negligible [3].

The expression of the structure functions Wa in terms
of a single distribution function, which depends on two
values ξ± of the scaling variable, is a large simplification.
Substituting the structure functions in (7) we arrive at

d3Γ

dEedq2dq0
=
G2

F |Vqb|2
4π3M

q0 − Ee√
q2 +m2

q

×{f(ξ+)(2ξ+EeM − q2) − (ξ+ → ξ−)
}
. (24)

The remaining unknown function is the reduced matrix
element on the light-cone whose Fourier transform appears
as the b-quark distribution function.

4 Properties of the distribution function

The distribution function obeys positivity and is zero for
ξ ≤ 0 or ξ ≥ 1 [3]. Three sum rules for the b-quark distri-
bution function are known. The first one expresses the b
quark number conservation [3]∫ 1

0
dξf(ξ) = 1 . (25)
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Performing the operator product expansion to reduce the
bilocal operator to local ones and following [5–7] in order
to expand the matrix element of the local operator in the
HQET, two more sum rules were derived. They determine
up to order (ΛQCD/mb)2 the mean value µ and the vari-
ance σ2 of the distribution function, which characterize
the position of the maximum and its width, respectively:

µ ≡
∫ 1

0
dξξf(ξ) =

mb

M
(1 + Eb) , (26)

σ2 ≡
∫ 1

0
dξ(ξ − µ)2f(ξ) =

m2
b

M2

(
2Kb

3
− E2

b

)
, (27)

where

Gb =
1

2M

〈
B

∣∣∣∣h̄v
gGαβσ

αβ

4m2
b

hv

∣∣∣∣B
〉
, (28)

Kb = − 1
2M

〈
B

∣∣∣∣h̄v
(iD)2

2m2
b

hv

∣∣∣∣B
〉
, (29)

with Eb = Gb +Kb. The first matrix element Gb paramet-
rizes the chromomagnetic energy arising from the b quark
spin and is determined by the mass splitting between B∗
and B mesons [5–7]. For the observed difference MB∗ −
MB = 0.046 GeV

mbGb = −3
4
(MB∗ −MB) = −0.034 GeV . (30)

The second matrix element Kb parametrizes the kinetic
energy of the b quark in the B meson. It is determined
with the help of QCD sum rules and carries a larger error,
leading to the result [22]

2m2
bKb = 0.5 ± 0.2 GeV2 . (31)

Taking mb = 4.9 ± 0.2 GeV, the mean value and the vari-
ance of the distribution function are estimated to be

µ = 0.93 ± 0.04 , (32)

σ2 = 0.006 ± 0.002 , (33)

indicating that the distribution function is sharply peaked
around its mean value, which is close to one. These results
are consistent with the original expectations that the dis-
tribution function of a heavy quark peaks at a large value
of its argument.

5 QCD radiative corrections

Special attention must be paid to the radiative corrections
from the emission of gluons and the associated virtual di-
agrams. QCD radiative corrections to the electron energy
spectra were studied in several articles [14–19], where they
were calculated at the quark level. As already mentioned
in the introduction, in the application of radiative correc-
tions at the hadron level we encounter two problems: the
first is to change the quark phase space to the physical
one and the second is the treatment of the logarithmic

singularities to order αs, which appear at the quark-level

endpoints Ee = mb

2 (1 − m2
q

m2
b

).
These problems may be solved by taking into account

the bound state effect. In the decay of a B-meson, the per-
turbative QCD correction will be modified by the bound
state effects, since QCD confinement implies that free
quarks are not asymptotic states of the theory. The bound
state effect is described by the b-quark distribution func-
tion given in (13), which is the probability of finding a b
quark with momentum ξP inside the B-meson. The sub-
stitution of the b quark momentum pb by ξP introduces
the hadronic phase space. Furthermore, the radiative cor-
rections obtained perturbatively must be convoluted with
the distribution function. The final contribution for the
radiative corrections is given by

dΓrad

dEe
=
∫ 1

Ee+
√

E2
e+m2

q

M

dξ f(ξ)

(
dΓ b

rad

dEe

)
pb=ξP

, (34)

where the quark-level O(αs) perturbative QCD correction
dΓ b

rad/dEe was computed analytically in [17,18]. In this
way the endpoints of the perturbative spectra are extented
from the quark level to the hadron level and the logarith-
mic singularities are eliminated. As we shall see, the in-
terplay between perturbative and nonperturbative QCD
effects is important, especially for the shape of the b → u
electron energy spectrum near the endpoint.

We could give at this point formulas for the radiative
corrections at the quark level, but since they are available
in two articles [17,18] we refer to them. The interested
reader may consult these articles and use their formulas for
dΓ b

rad/dEe which occurs in (34). An important property of
(34) is that the integral over ξ eliminates the logarithmic
singularities.

In order to calculate the decay spectra we need a dis-
tribution function f(ξ) consistent with the properties of
Sect. 4. We propose the Ansatz

f(ξ) = N
ξ(1 − ξ)

(ξ − a)2 + b2
θ(ξ)θ(1 − ξ) , (35)

where N is the normalization constant and a and b two
parameters. For a = mb/M and b = 0, this distribution
function reduces to a delta function, δ(ξ − mb/M), and
thus reproduces the free-quark decay model. In addition,
the constraints (32) and (33), stemming from the HQET,
limit the two constants a and b. Other forms of the distri-
bution function have been proposed in [23,24].

We use (24), (34) and (35) to compute the electron en-
ergy spectra for b → c and b → u decays. The calculation
is done using (24) by integrating first over q0 and then
over q2 with the integration limits

Ee +
q2

4Ee
≤ q0 ≤ q2 +M2 −M2

Xmin

2M
, (36)

0 ≤ q2 ≤ 2Ee

(
M − M2

Xmin

M − 2Ee

)
. (37)
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Fig. 1. Comparison of the radiative correction to the b → u
electron energy spectrum in the endpoint region as calculated
in this paper (solid line) with the quark-level results of [18]
without (long-dashed line) and with (short-dashed line) the Su-
dakov exponentiation for αs = 0.25, mb = 4.9 GeV, mu = 0,
a = 0.953 and b = 0.00560

For practical calculations we take MXmin = mq on the
assumption of quark-hadron duality.

The parameters which enter in the calculation are the
final quark mass mq, the parameters a and b (or the equiv-
alent quantities: the mean value µ and the variance σ2) of
the distribution function and the strong coupling constant
αs. An important feature is the appearance in the decay
rates of the physical B-meson mass instead of the b quark
mass.

The necessity of taking into account the interplay be-
tween perturbative and nonperturbative QCD effects on
both b → c and b → u spectra is discussed above. Here we
illustrate in Fig. 1 that this interplay is important espe-
cially in the endpoint region of the b → u spectrum. The
radiative correction calculated with the help of (34) is a
smooth function of the electron energy up to the physi-
cal endpoint (solid curve). The other two curves show the
quark-level perturbative correction without and with the
Sudakov exponentiation [16], respectively. Radiative cor-
rections without the Sudakov exponentiation run off to
infinity with increasing energy as expected. The Sudakov
exponentiation eliminates the singularity and gives a de-
cay rate finite up to the quark-level endpoint Ee = mb

2 .
Beyond this value the correction is zero. For our case, the
radiative correction, shown in Fig. 1, remains finite all the
way up to the physical endpoint Ee = M

2 .
The property that the averaging over a variable of the

initial quark renders the radiative corrections finite is gen-
eral. For example, the authors in [12] introduced a smear-
ing over the b-quark momentum, which renders the pertur-
batively calculated spectra finite. Similarly, the averaging
over the momentum distribution of the spectator in the
ACCMM model [16] makes the radiative corrections finite.
The authors in [25] computed the hadron energy spectrum
including radiative corrections. For the ACCMM model
they included the averaging over the Fermi motion, which
makes the perturbative term finite.
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Fig. 2. The shape of the electron energy spectrum from the
b → u inclusive semileptonic B meson decay in the rest frame
of the B meson for various values of parameters: (1) mu = 0,
µ = 0.93, σ2 = 0.006 (a = 0.953, b = 0.00560) (solid line);
(2) mu = 0, µ = 0.89, σ2 = 0.006 (a = 0.913, b = 0.00992)
(long-dashed line); (3) mu = 0, µ = 0.93, σ2 = 0.008 (a =
0.960, b = 0.00679) (short-dashed line). The strong coupling
constant is fixed to be αs = 0.25

6 Electron energy spectra

Having at our disposal a coherent treatment of perturba-
tive and nonperturbative QCD effects, we study the sensi-
tivity of the shape of the spectrum to various parameters.
As discussed in the previous section, we use (24), (34)
and (35) to compute the spectra. More precisely, we inte-
grate (24) over q0 and q2 and then add the QCD radiative
correction from (34) to obtain the radiatively corrected
electron spectrum.

The b → u spectrum is shown in Fig. 2 as a function
of µ and σ2. It is evident that the spectrum is much more
sensitive to the mean value µ of the distribution function
than its variance σ2. The shape of the spectrum is insen-
sitive to the value of the mass of the final quark mu. The
effect of the radiative corrections on the spectrum is shown
in Fig. 3 where we have chosen two values of αs = 0.25
(solid curve) and αs = 0 (dashed curve). The effect of the
radiative correction is moderate.

The spectrum near the endpoint is important for the
determination of |Vub|. We study the sensitivity of the
endpoint spectrum to two different distribution functions.
In addition to the distribution in (35) we use the Ansatz
from [23], for which we fix the parameters to satisfy the
central values of the sum rules in (32) and (33). Then we
calculate the b → u spectra shown in Fig. 4. We note
that the two curves are close to each other. The corre-
sponding partial decay width to the endpoint region 2.31
GeV≤ Ee ≤ 2.64 GeV is calculated to be 10.7|Vub|2ps−1

using (35) and 11.5|Vub|2ps−1 using the Ansatz from [23],
respectively. These suggest that the determination of |Vub|
from the endpoint spectrum does not depend strongly on
the Ansatz for the distribution function.

We study next the dependence of the shape of the elec-
tron energy spectrum for the b → c decay on various pa-
rameters. In addition to the previous parameters, the mass
of the charm quark plays now a role. We show in Fig. 5
the electron spectrum as a function of mc, µ and σ2. The
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Fig. 3. The shape of the electron energy spectrum from the
b → u inclusive semileptonic B meson decay in the rest frame of
the B meson for mu = 0, µ = 0.93, σ2 = 0.006 (a = 0.953, b =
0.00560), αs = 0.25 (solid line) and αs = 0 (dashed line)
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Fig. 4. The shape of the b → u endpoint spectrum in the rest
frame of the B meson using (35) (solid line) and the Ansatz
from [23] (dashed line) for αs = 0.25, mu = 0, µ = 0.93 and
σ2 = 0.006

shape of the spectrum is a sensitive function of the mass of
the charm quark mc and of the mean value µ. It is rather
insensitive to the variance σ2. In Fig. 6 we show the elec-
tron spectrum with and without radiative corrections. It
is evident that the b → c spectrum is insensitive to the
value of αs.

With the parameters determined so far we can calcu-
late the b → c spectrum and compare it with the recent
experimental data from the CLEO collaboration [26]. We
present our result in Fig. 7, where the theoretical curve
has been boosted to the rest frame of the Υ (4S) resonance.
The curve for the central values of the sum rules in (32)
and (33) passes to the right of the experimental points.
For this reason we searched for values of a and b consis-
tent with the sum rules which reproduce the data. The
result is shown in Fig. 7 for a = 0.931 and b = 0.0118
corresponding to µ = 0.90 and σ2 = 0.008.

The above analyses indicate the sensitivity of the spec-
tral shape to various parameters and imply that a de-
tailed fit1 to the measured spectrum can impose strong
constraints on the mean value of the distribution function
and the mass of the charm quark. This procedure will re-

1 Such a fit should also account for detector resolution and
bremsstrahlung
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duce the theoretical uncertainty in the calculation of the
semileptonic decay width of the B-meson [27] and improve
the accuracy of the predictions for the b → u spectrum.
Precise determinations of |Vcb| and |Vub| may be gained
from inclusive semileptonic B-meson decays. Finally, the
same tensor structure appears in the decay B → J/ψ+X
[28] and a universal fit of both processes would be of inter-
est. Dedicated studies of the inclusive B decays will also
offer more insight into the internal structure of hadrons.
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